Kategoria: <span>Repetytorium maturalne</span>

Arkusz maturalny - trygonometria

Zestaw zadań maturalnych z lat ubiegłych posegregowanych tematycznie. Temat przewodni zestawu - trygonometria - poziom rozszerzony


Zadania maturalne: trygonometria

Zadanie  (0-4) - test diagnostyczny poziom rozszerzony grudzień 2022, zadanie 5

2023

Rozwiąż równanie

6sinx+2√3cosx+3tgx+√3=0

Zapisz obliczenia

Zadanie  (0-4) - arkusz pokazowy poziom rozszerzony marzec 2022, zadanie 7

2023

Rozwiąż równanie

sin(3x)=2sinx

w zbiorze [0, π]

Zapisz obliczenia.

Zadanie  (0-5) - Zadania sprawdzające – poziom rozszerzony, zadanie 18

2023

Rozwiąż równanie

cos^2x-\frac{2\sqrt{3}}{3}sinxcosx-sin^2x=0

w przedziale [−π,π].

Zapisz obliczenia.

Zadanie  (0-4) - matura poziom rozszerzony czerwiec 2022, zadanie 11

2015

Rozwiąż równanie cos(3x)+√3sin(3x)+1=0 w przedziale 〈0, π〉.

Zadanie  (0-4) - matura poziom rozszerzony maj 2022, zadanie 11

2015

Rozwiąż równanie sinx+sin2x+sin3x=0 w przedziale 〈0, π〉.

Zadanie  (0-4) - matura poziom rozszerzony czerwiec 2021, zadanie 8

2015

Rozwiąż równanie 2cos2x−cosx=sin(2x)−sinx w przedziale 〈0, 2π〉.

Zadanie  (0-5) - matura poziom rozszerzony maj 2021, zadanie 12

2015

Rozwiąż równanie cos2x=\frac{\sqrt{2}}{2}(cosx-sinx) w przedziale 〈0, π〉.



Zadanie  (0-4) - matura poziom rozszerzony (czerwiec)l ipiec 2020, zadanie 9

2015

Rozwiąż równanie 4sin3x+sin2x=2sin2x·(2cosx+1).

Zadanie  (0-4) - matura poziom rozszerzony (maj)l czerwiec 2020, zadanie 9

2015

Rozwiąż równanie 3cos2x+10cos2x=24sinx-3 w przedziale 〈0, 2π〉.

Zadanie  (0-4) - matura poziom rozszerzony czerwiec 2019, zadanie 14

2015

Rozwiąż równanie 4sin7xcos2x=2sin9x-1 w przedziale 〈0, π〉.

Zadanie  (0-4) - matura poziom rozszerzony maj 2019, zadanie 14

2015

Rozwiąż równanie (cosx)[sin(x-\frac{\pi}{3})+sin(x+\frac{\pi}{3})]=\frac{1}{2}sinx.

Zadanie  (0-3) - matura poziom rozszerzony czerwiec 2018, zadanie 7

2015

Udowodnij, że dla dowolnego kąta \alpha\in(0, \frac{\pi}{2}) prawdziwa jest nierówność

sin(\frac{\pi}{12}-\alpha)\cdot cos(\frac{\pi}{12}+\alpha)<\frac{1}{4}.



Zadanie  (0-4) - matura poziom rozszerzony maj 2018, zadanie 11

2015

Rozwiąż równanie sin6x+cos3x=2sin3x+1 w przedziale 〈0, π〉.

Zadanie  (0-4) - matura poziom rozszerzony czerwiec 2017, zadanie 11

2015

Rozwiąż równanie 3sin(x-\frac{\pi}{4})+cos(x+\frac{\pi}{4})=1 w przedziale 〈0, 2π〉.

Zadanie  (0-4) - matura poziom rozszerzony maj 2017, zadanie 10

2015

Rozwiąż równanie cos2x+3cosx=-2 w przedziale 〈0, 2π〉.

Zadanie  (0-3) - matura poziom rozszerzony czerwiec 2016, zadanie 13

2015

Rozwiąż nierówność (2sinx-3)(2sinx+1)>0 w przedziale 〈0, 2π〉.

Zadanie  (0-4) - matura poziom rozszerzony maj 2016, zadanie 11

2015

Rozwiąż nierówność \frac{2cosx-\sqrt{3}}{cos^2x}<0 w przedziale 〈0, 2π〉.



Zadanie  (0-4) - matura poziom rozszerzony czerwiec 2015, zadanie 10

2015

Rozwiąż równanie (4sin2x-1)·sinx=cos2x-3sin2x, dla x∈(-π,0).

Zadanie 17 (0-4) - matura poziom rozszerzony maj 2014, zadanie 3

Rozwiąż równanie √3· cosx=1+sinx w przedziale 〈0, 2π〉.


Arkusz maturalny - kombinatoryka

Zestaw zadań maturalnych z lat ubiegłych posegregowanych tematycznie. Temat przewodni zestawu - kombinatoryka - poziom rozszerzony


Zadania maturalne: kombinatoryka

Zadanie  (0-3) - matura poziom rozszerzony czerwiec 2022, zadanie 7

2015

Oblicz, ile jest wszystkich liczb naturalnych pięciocyfrowych, w których zapisie występują dokładnie dwie cyfry nieparzyste.

Zadanie  (0-4) - matura poziom rozszerzony maj 2020, zadanie 13

2015

Oblicz, ile jest wszystkich siedmiocyfrowych liczb naturalnych, w których zapisie dziesiętnym występują dokładnie trzy cyfry 1 i dokładnie dwie cyfry 2.

Zadanie  (0-3) - matura poziom rozszerzony maj 2019, zadanie 6

2015

Rozważamy wszystkie liczby naturalne pięciocyfrowe zapisane przy użyciu cyfr 1, 3, 5, 7, 9, bez powtarzania jakiejkolwiek cyfry. Oblicz sumę wszystkich takich liczb.

Zadanie  (0-3) - matura poziom rozszerzony czerwiec 2019, zadanie 6

2015

Oblicz, ile jest siedmiocyfrowych liczb naturalnych takich, że iloczyn wszystkich ich cyfr w zapisie dziesiętnym jest równy 28.

Zadanie  (0-4) - matura poziom rozszerzony czerwiec 2016, zadanie 15

2015

Oblicz, ile jest wszystkich liczb naturalnych pięciocyfrowych, w których zapisie występują dokładnie trzy cyfry nieparzyste.




Arkusz maturalny - wielomiany

Zestaw zadań maturalnych z lat ubiegłych posegregowanych tematycznie. Temat przewodni zestawu - wielomiany - poziom rozszerzony


Zadania maturalne: wielomiany

Zadanie  (0-1) - matura poziom rozszerzony maj 2021, zadanie 3

2015

Wielomian W(x)=x4+81 jest podzielny przez

A. x-3

B. x2+9

C. x2-3√2x+9

D. x2+3√2x-9

Zadanie  (0-1) - matura poziom rozszerzony maj 2020, zadanie 1

2015

Wielomian W określony wzorem W(x) = x2019 − 3x2000 + 2x + 6

A. jest podzielny przez (x −1) i z dzielenia przez (x +1) daje resztę równą 6 .

B. jest podzielny przez (x +1) i z dzielenia przez (x −1) daje resztę równą 6 .

C. jest podzielny przez (x −1) i jest podzielny przez (x +1) .

D. nie jest podzielny ani przez (x −1), ani przez (x +1) .

Zadanie  (0-2) - matura poziom rozszerzony czerwiec 2021, zadanie 5

2015

Wynikiem dzielenia wielomianu 5x3−7x2−4x−4 przez dwumian x−2 jest trójmian kwadratowy postaci ax2+bx+c. W poniższe kratki wpisz kolejno – od lewej do prawej – wartości współczynników a, b oraz c.

Zadanie  (0-4) - matura poziom rozszerzony maj 2022, zadanie 9

2015

Reszta z dzielenia wielomianu W(x)=4x3-6x2-(5m+1)x-2m przez dwumian x+2 jest równa (−30).

Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność W(x) ≥ 0.

Zadanie  (0-6) - matura poziom rozszerzony maj 2019, zadanie 13

2015

Wielomian określony wzorem W(x)=2x3+(m3+2)x2-11x-2(2m+1) jest podzielny przez dwumian (x-2) oraz przy dzieleniu przez dwumian (x+1) daje resztę 6. Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność W(x)≤0.




Arkusz maturalny - funkcje i wyrażenia wymierne

Zestaw zadań maturalnych z lat ubiegłych posegregowanych tematycznie. Temat przewodni zestawu - funkcje i wyrażenia wymierne - poziom rozszerzony


Zadania maturalne: funkcje i wyrażenia wymierne

Zadanie  (0-5) - test diagnostyczny poziom rozszerzony grudzień 2022, zadanie 8

2023

Rozwiąż nierówność

\frac{x-1}{x^2-4}-\frac{1}{2-x}\geq \frac{3}{2+x}+2

Zapisz obliczenia.

Zadanie  (0-3) - arkusz pokazowy poziom rozszerzony marzec 2022, zadanie 2

2023

Funkcja f jest określona wzorem f(x)=\frac{x^2+3}{x-1} dla każdej liczby rzeczywistej x≠1.

Wyznacz równanie stycznej do wykresu tej funkcji w punkcie P=(−3, −3).

Zapisz obliczenia.

Zadanie  (0-3) - matura poziom rozszerzony czerwiec 2022, zadanie 8

2015

Rozwiąż nierówność

\frac{3x+1}{2x+1}\leq \frac{3x+4}{2x+3}

Zadanie  (0-5) - matura poziom rozszerzony czerwiec 2021, zadanie 13

2015

Dana jest funkcja f określona wzorem f(x)=\frac{x^3+k}{x} dla każdej liczby rzeczywistej x≠0. Oblicz wartość k, dla której prosta o równaniu y=-x jest styczna do wykresu funkcji f.




Arkusz maturalny - bryły

Zestaw zadań maturalnych z lat ubiegłych posegregowanych tematycznie. Temat przewodni zestawu - bryły - poziom rozszerzony


Zadania maturalne: bryły

Zadanie  (0-5) - test diagnostyczny poziom rozszerzony grudzień 2022, zadanie 10

2023

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD. Krawędź podstawy tego ostrosłupa ma długość ɑ. Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem o mierze ɑ takim, że cos\alpha =\frac{\sqrt{10}}{10}. Przez krawędź BC podstawy ostrosłupa poprowadzono płaszczyznę π prostopadłą do ściany bocznej SAD.

Sporządź rysunek tego ostrosłupa, zaznacz na rysunku przekrój wyznaczony przez płaszczyznę π i nazwij figurę, która jest tym przekrojem. Oblicz pole otrzymanego przekroju.

Zapisz obliczenia.

Zadanie  (0-6) - arkusz pokazowy poziom rozszerzony marzec 2022, zadanie 10

2023

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD i polu powierzchni bocznej równym P. Kąt między wysokościami sąsiednich ścian bocznych poprowadzonych z wierzchołka S ma miarę 2α.

Objętość tego ostrosłupa jest równa \sqrt{k\cdot P^3\cdot sin\alpha \cdot cos(2\alpha)} , gdzie k jest stałym współczynnikiem liczbowym.

Oblicz współczynnik k.

Zapisz obliczenia.

Zadanie  (0-5) - matura poziom rozszerzony czerwiec 2022, zadanie 12

2015

Podstawą graniastosłupa prostego ABCDA1B1C1D1 jest trapez równoramienny ABCD wpisany w okrąg o środku O i promieniu R. Dłuższa podstawa AB trapezu jest średnicą tego okręgu, a krótsza – cięciwą odpowiadającą kątowi środkowemu o mierze 2α (zobacz rysunek). Przekątna ściany bocznej zawierającej ramię trapezu jest nachylona do płaszczyzny podstawy pod kątem o mierze α. Wyznacz objętość tego graniastosłupa jako funkcję promienia R i miary kąta α.

Zadanie  (0-5) - matura poziom rozszerzony maj 2022, zadanie 13

2015

Dany jest graniastosłup prosty ABCDEFGH o podstawie prostokątnej ABCD. Przekątne AH i AF ścian bocznych tworzą kąt ostry o mierze α takiej, że sin\alpha=\frac{12}{13} (zobacz rysunek). Pole trójkąta AFH jest równe 26,4. Oblicz wysokość h tego graniastosłupa.

Zadanie  (0-4) - matura poziom rozszerzony czerwiec 2021, zadanie 10

2015

Dany jest sześcian ABCDEFGH o krawędzi długości 2. Punkt S jest środkiem krawędzi DH (zobacz rysunek). Oblicz miarę najmniejszego kąta wewnętrznego trójkąta CFS.

Zadanie  (0-6) - matura poziom rozszerzony maj 2020, zadanie 14

2015

Podstawą ostrosłupa czworokątnego ABCDS jest trapez ABCD ( AB||CD). Ramiona tego trapezu mają długości |AD|=10 i |BC|=16, a miara kąta ABC jest równa 30°. Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α, taki, że tg\alpha=\frac{9}{2}. Oblicz objętość tego ostrosłupa.

Zadanie  (0-6) - matura poziom rozszerzony czerwiec 2019, zadanie 11

2015

Podstawą ostrosłupa prawidłowego ABCS jest trójkąt równoboczny ABC o boku długości 6. Na krawędziach bocznych BS i CS wybrano punkty, odpowiednio D i E, takie że |BD|=|CE| oraz |DE|=4 (zobacz rysunek). Płaszczyzna ADE jest prostopadła do płaszczyzny ściany bocznej BCS ostrosłupa.

Oblicz objętość tego ostrosłupa.

Zadanie  (0-3) - matura poziom rozszerzony maj 2016, zadanie 11

2015

Dany jest sześcian ABCDEFGH. Przez wierzchołki A i C oraz środek K krawędzi BF poprowadzono płaszczyznę, która przecina przekątną BH w punkcie P (zobacz rysunek).

Wykaż, że |BP|:|HP|=1:3.