Tag: <span>matura poziom podstawowy 2016</span>

Egzamin maturalny podstawowy z matematyki 2016 - Arkusz odpowiedzi z wynikami

Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:


Treść zadania - bez analizy i odpowiedzi


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Logarytmy - zadanie dowodowe - z. 1

Zadanie 1 

Niech k będzie sumą liczb a, b, c, których logarytmy o podstawie 4 są kolejnymi liczbami naturalnymi. Niech l będzie sumą liczb d, e, f, których logarytmy o podstawie 5 stanowią ten sam zestaw kolejnych liczb naturalnych. Udowodnij, że iloczyn k·l jest podzielny przez 651.

Czytaj dalej"Logarytmy - zadanie dowodowe - z. 1"

Matura 2016 p. podstawowy matematyka - z. 5

Zadanie 5 (0-1)

Jedną z liczb, które spełniają nierówność -x5+x3-x<-2, jest

A. 1

B. -1

C. 2

D. -2

Źródło CKE - Arkusz egzaminacyjny 2015/2016 - Matura maj poziom podstawowy

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 5"

Matura 2016 p. podstawowy matematyka - z. 4

Zadanie 4 (0-1)

Równość (2√2-a)2=17-12√2 jest prawdziwa dla

A. a=3

B. a=1

C. a=-2

D. a=-3

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 4"

Matura 2016 p. podstawowy matematyka - z. 3

Zadanie 3 (0-1)

Liczby a i c są dodatnie. Liczba b stanowi 48% liczby a oraz 32% liczby c. Wynika stąd, że

A. c=1,5a

B. c=1,6a

C. c=0,8a

D. c=0,16a

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 3"

Matura 2016 p. podstawowy matematyka - z. 1

Zadanie 1 (0-1)

Dla każdej dodatniej liczby a iloraz jest równy

A.

B.

C.

D.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 1"

Matura 2016 p. podstawowy matematyka - z. 34

Zadanie 34 (0-4)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 34"

Matura 2016 p. podstawowy matematyka - z. 33

Zadanie 33 (0-5)

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt równoboczny ABC. Wysokość SO tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa 27. Oblicz pole powierzchni bocznej ostrosłupa ABCS oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 33"

Matura 2016 p. podstawowy matematyka - z. 32

Zadanie 32 (0-4)

Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50°. Oblicz kąty tego trójkąta.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 32"

Matura 2016 p. podstawowy matematyka - z. 31

Zadanie 31 (0-2)

Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem r=log(A/Ao), gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, Ao=10-4 jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 6,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od 100 cm.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 31"

Matura 2016 p. podstawowy matematyka - z. 30

Zadanie 30 (0-2)

Ciąg (an) jest określony wzorem an=2n2+2n dla n≥1. Wykaż, że suma każdych dwóch kolejnych wyrazów tego ciągu jest kwadratem liczby naturalnej.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 30"

Matura 2016 p. podstawowy matematyka - z. 29

Zadanie 29 (0-2)

Dany jest trójkąt prostokątny . Na przyprostokątnych i tego trójkąta obrano odpowiednio punkty i . Na przeciwprostokątnej wyznaczono punkty i takie, że (zobacz rysunek). Wykaż, że trójkąt jest podobny do trójkąta .

Źródło: CKE matura maj 2016

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 29"

Matura 2016 p. podstawowy matematyka - z. 26

Zadanie 26 (0-2)

W tabeli przedstawiono roczne przyrosty wysokości pewnej sosny w ciągu sześciu kolejnych lat.

kolejne lata 123456
przyrost (w cm) 10107887

Oblicz średni roczny przyrost wysokości tej sosny w badanym okresie sześciu lat. Otrzymany wynik zaokrąglij do 1 cm. Oblicz błąd względny otrzymanego przybliżenia. Podaj ten błąd w procentach.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 26"

Matura 2016 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1)

Średnia arytmetyczna sześciu liczb naturalnych: 31, 16, 25, 29, 27, x, jest równa x/2. Mediana tych liczb jest równa

A. 26

B. 27

C. 28

D. 29

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 25"

Matura 2016 p. podstawowy matematyka - z. 24

Zadanie 24 (0-1)

Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).

Źródło: CKE Matura maj 2016

Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze

A. 30o

B. 45o

C. 60o

D. 75o

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 24"

Matura 2016 p. podstawowy matematyka - z. 23

Zadanie 23 (0-1)

Kąt rozwarcia stożka ma miarę 120°, a tworząca tego stożka ma długość 4. Objętość tego stożka jest równa

A.

B.

C.

D.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 23"