Tag: <span>matura czerwiec 2021</span>

Matura czerwiec 2021 p. podstawowy matematyka - z. 35

Zadanie 35 (0-5)

Podstawa AB trójkąta równoramiennego ABC jest zawarta w prostej o równaniu y=−2x+16. Wierzchołki B i C mają współrzędne B=(3, 10) i C=(−2, 3). Oblicz współrzędne wierzchołka A i pole trójkąta ABC.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 35"

Matura czerwiec 2021 p. podstawowy matematyka - z. 34

Zadanie 34 (0-2)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych, których cyfra dziesiątek należy do zbioru {3, 4, 5, 6, 7, 8}, a cyfra jedności należy do zbioru {0, 1, 2, 3, 4}, losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy liczbę dwucyfrową, która jest podzielna przez 4.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 34"

Matura czerwiec 2021 p. podstawowy matematyka - z. 33

Zadanie 33 (0-2)

W trójkącie ABC boki BC i AC są równej długości. Prosta k jest prostopadła do podstawy AB tego trójkąta i przecina boki AB oraz BC w punktach – odpowiednio – D i E. Pole czworokąta ADEC jest 17 razy większe od pola trójkąta BED. Oblicz \frac{|CE|}{|EB|}.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 33"

Matura czerwiec 2021 p. podstawowy matematyka - z. 32

Zadanie 32 (0-2)

Dany jest trapez o podstawach długości a oraz b i wysokości h. Każdą z podstaw tego trapezu wydłużono o 25%, a wysokość skrócono tak, że powstał nowy trapez o takim samym polu. Oblicz, o ile procent skrócono wysokość h trapezu.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 32"

Matura czerwiec 2021 p. podstawowy matematyka - z. 31

Zadanie 31 (0-2)

Dany jest ciąg arytmetyczny (an), określony dla wszystkich liczb naturalnych n≥1. Suma dwudziestu początkowych wyrazów tego ciągu jest równa 20a21 + 62. Oblicz różnicę ciągu (an).

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 31"

Matura czerwiec 2021 p. podstawowy matematyka - z. 30

Zadanie 30 (0-2)

Wykaż, że dla wszystkich liczb rzeczywistych a, b i c takich, że \frac{a+b}{2}>c i \frac{b+c}{2}>a, prawdziwa jest nierówność

\frac{a+c}{2}<b

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 30"

Matura czerwiec 2021 p. podstawowy matematyka - z. 29

Zadanie 29 (0-2)

Rozwiąż nierówność: 2(x+1)(x-3)<x2-9

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 29"

Matura czerwiec 2021 p. podstawowy matematyka - z. 28

Zadanie 28 (0-1)

Średnia arytmetyczna czterech liczb dodatnich: 2, 3x, 3x+2, 3x+4 jest równa \frac{13}{2}. Wynika stąd, że

A. x=9

B. x=\frac{13}{2}

C. x=\frac{5}{9}

D. x=2

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 28"

Matura czerwiec 2021 p. podstawowy matematyka - z. 27

Zadanie 27 (0-1)

W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera - spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 25% więcej niż płytek z literami samogłoskowymi. Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe

A. 0,75

B. 0,25

C. \frac{4}{9}

D. \frac{5}{9}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 27"

Matura czerwiec 2021 p. podstawowy matematyka - z. 26

Zadanie 26 (0-1)

Wysokość ściany bocznej ostrosłupa prawidłowego sześciokątnego jest 2 razy dłuższa od krawędzi jego podstawy. Stosunek pola powierzchni bocznej tego ostrosłupa do pola jego podstawy jest równy

A. \frac{1}{2}

B. \frac{4\sqrt{3}}{3}

C. 1

D. \frac{\sqrt{3}}{4}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 26"

Matura czerwiec 2021 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1)

Graniastosłup prawidłowy ma 36 krawędzi. Długość każdej z tych krawędzi jest równa 4. Pole powierzchni bocznej tego graniastosłupa jest równe

A. 176

B. 192

C. 224

D. 288

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 25"

Matura czerwiec 2021 p. podstawowy matematyka - z. 24

Zadanie 24 (0-1) - matura poziom podstawowy czerwiec 2021

2015

Obrazem prostej o równaniu x-2y+3=0 w symetrii osiowej względem osi Oy jest prosta o równaniu

A. -x+2y+3=0

B. -x+2y-3=0

C. x+2y-3=0

D. x+2y+3=0

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 24"

Matura czerwiec 2021 p. podstawowy matematyka - z. 23

Zadanie 23 (0-1) - matura poziom podstawowy czerwiec 2021

2015

W prostokącie ABCD dane są wierzchołki C=(-3, 1) oraz D=(2,1). Bok AD ma długość 6. Pole tego prostokąta jest równe

A. 6sqrt{29}

B. 12sqrt{2}

C. 24

D. 30

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 23"

Matura czerwiec 2021 p. podstawowy matematyka - z. 22

Zadanie 22 (0-1) - matura poziom podstawowy czerwiec 2021

2015

Proste o równaniach y=-\frac{1}{m-2}x-1 i y=\frac{1}{3}x+1 są równoległe. Wynika stąd, że

A. m=rac{5}{3}

B. m=-1

C. m=rac{7}{3}

D. m=5

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 22"

Matura czerwiec 2021 p. podstawowy matematyka - z. 21

Zadanie 21 (0-1) - matura poziom podstawowy czerwiec 2021

2015

Prosta przechodząca przez punkty (-4,-1) oraz (5, 5) ma równanie

A. y=x+3

B. y=rac{2}{3}x+rac{5}{3}

C. y=x-3

D. y=rac{2}{3}x+rac{11}{3}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 21"

Matura czerwiec 2021 p. podstawowy matematyka - z. 20

Zadanie 20 (0-1) - matura poziom podstawowy czerwiec 2021

2015

W pewnym trójkącie równoramiennym największy kąt ma miarę 120°, a najdłuższy bok ma długość 12 (zobacz rysunek)

Najkrótsza wysokość tego trójkąta ma długość równą

A. 6

B. 2√3

C. 4√3

D. 6√3

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 20"

Matura czerwiec 2021 p. podstawowy matematyka - z. 19

Zadanie 19 (0-1) - matura poziom podstawowy czerwiec 2021

2015

Jeden z boków równoległoboku ma długość równą 5. Przekątne tego równoległoboku mogą mieć długość

A. 4 i 6

B. 4 i 3

C. 10 i 10

D. 5 i 5

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 19"

Matura czerwiec 2021 p. podstawowy matematyka - z. 18

Zadanie 18 (0-1) - matura poziom podstawowy czerwiec 2021

2015

Dany jest trójkąt prostokątny ABC o bokach |AC|=24, |BC|=10, |AB|=26. Dwusieczne kątów tego trójkąta przecinają się w punkcie P (zobacz rysunek)

Odległość x punktu P od przeciwprostokątnej AB jest równa

A. 2

B. 4

C. \frac{5}{2}

D. \frac{13}{3}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 18"

Matura czerwiec 2021 p. podstawowy matematyka - z. 17

Zadanie 17 (0-1)

Dane są okrąg i prosta styczna do tego okręgu w punkcie A. Punkty B i C są położone na okręgu tak, że BC jest średnicą. Cięciwa AB tworzy ze styczną kąt o mierze 40° (zobacz rysunek)

Miara kąta ABC jest równa

A. 20°

B. 40°

C. 45°

D. 50°

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 17"

Matura czerwiec 2021 p. podstawowy matematyka - z. 16

Zadanie 16 (0-1) - matura poziom podstawowy czerwiec 2021

2015

Na okręgu o środku w punkcie O leżą punkty A, B oraz C. Odcinek AC jest średnicą tego okręgu, a kąt środkowy AOB ma miarę 82°(zobacz rysunek)

Miara kąta OBC jest równa

A. 41°

B. 45°

C. 49°

D. 51°

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 16"