Tag: <span>matura poziom podstawowy maj 2021</span>

Matura maj 2021 p. podstawowy matematyka - z. 35

Zadanie 35 (0-5) - matura poziom podstawowy maj 2021

2015

Punkty A=(−20, 12) i B=(7, 3) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC|=|BC|. Wierzchołek C leży na osi Oy układu współrzędnych. Oblicz współrzędne wierzchołka C oraz obwód tego trójkąta.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 35"

Matura maj 2021 p. podstawowy matematyka - z. 34

Zadanie 34 (0-2) - matura poziom podstawowy maj 2021

2015

Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma liczb wyrzuconych oczek jest równa 4 lub 5, lub 6.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 34"

Matura maj 2021 p. podstawowy matematyka - z. 33

Zadanie 33 (0-2) - matura poziom podstawowy maj 2021

2015

Trójkąt równoboczny ABC ma pole równe 9√3. Prosta równoległa do boku przecina boki AB i BC – odpowiednio – w punktach K i L. Trójkąty ABC i AKL są podobne, a stosunek długości boków tych trójkątów jest równy \frac{3}{2}. Oblicz długość boku trójkąta AKL.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 33"

Matura maj 2021 p. podstawowy matematyka - z. 32

Zadanie 32 (0-2) - matura poziom podstawowy maj 2021

2015

Rozwiąż równanie

\frac{3x+2}{3x-2}=4-x

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 32"

Matura maj 2021 p. podstawowy matematyka - z. 31

Zadanie 31 (0-2) - matura poziom podstawowy maj 2021

2015

Funkcja liniowa f przyjmuje wartość 2 dla argumentu 0, a ponadto f(4)−f(2)=6. Wyznacz wzór funkcji f.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 31"

Matura maj 2021 p. podstawowy matematyka - z. 30

Zadanie 30 (0-2) - matura poziom podstawowy maj 2021

2015

Wykaż, że dla każdych trzech dodatnich liczb a, b i c takich, że a<b, spełniona jest nierówność

\frac{a}{b}<\frac{a+c}{b+c}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 30"

Matura maj 2021 p. podstawowy matematyka - z. 29

Zadanie 29 (0-2) - matura poziom podstawowy maj 2021

2015

Rozwiąż nierówność:

x2-5x≤14

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 29"

Matura maj 2021 p. podstawowy matematyka - z. 28

Zadanie 28 (0-1) - matura poziom podstawowy maj 2021

2015

Sześciowyrazowy ciąg liczbowy (1, 2, 2x, x+2, 5, 6) jest niemalejący. Mediana wyrazów tego ciągu jest równa 4. Wynika stąd, że

A. x=1

B. x=\frac{3}{2}

C. x=2

D. x=\frac{8}{3}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 28"

Matura maj 2021 p. podstawowy matematyka - z. 27

Zadanie 27 (0-1) - matura poziom podstawowy maj 2021

2015

Wszystkich liczb naturalnych trzycyfrowych, większych od 700, w których każda cyfra należy do zbioru {1, 2, 3, 7, 8, 9} i żadna cyfra się nie powtarza, jest

A. 108

B. 60

C. 40

D. 299

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 27"

Matura maj 2021 p. podstawowy matematyka - z. 26

Zadanie 26 (0-1) - matura poziom podstawowy maj 2021

2015

Z wierzchołków sześcianu losujemy jednocześnie dwa różne wierzchołki. Prawdopodobieństwo tego, że wierzchołki te będą końcami przekątnej sześcianu, jest równe

A. \frac{1}{7}

B. \frac{4}{7}

C. \frac{1}{14}

D. \frac{3}{7}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 26"

Matura maj 2021 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1) - matura poziom podstawowy maj 2021

2015

Punkt A = (3, −5) jest wierzchołkiem kwadratu, a punkt M = (1, 3) jest punktem przecięcia się przekątnych tego kwadratu. Wynika stąd, że pole kwadratu jest równe

A. 68

B. 136

C. 2sqrt{34}

D. 8sqrt{34}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 25"

Matura maj 2021 p. podstawowy matematyka - z. 24

Zadanie 24 (0-1) - matura poziom podstawowy maj 2021

2015

Pole figury F1 złożonej z dwóch stycznych zewnętrznie kół o promieniach 1 i 3 jest równe polu figury F2 złożonej z dwóch stycznych zewnętrznie kół o promieniach długości (zobacz rysunek).

Długość promienia jest równa

A. sqrt{3}

B. 2

C. sqrt{5}

D. 3

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 24"

Matura maj 2021 p. podstawowy matematyka - z. 23

Zadanie 23 (0-1) - matura poziom podstawowy maj 2021

2015

W każdym n–kącie wypukłym (n ≥ 3) liczba przekątnych jest równa \frac{n(n-3)}{2}. Wielokątem wypukłym, w którym liczba przekątnych jest o 25 większa od liczby boków, jest

A. siedmiokąt

B. dziesięciokąt

C. dwunastokąt

D. piętnastokąt

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 23"

Matura maj 2021 p. podstawowy matematyka - z. 22

Zadanie 22 (0-1) - matura poziom podstawowy maj 2021

2015

W równoległoboku ABCD, przedstawionym na rysunku, kąt α ma miarę 70°.

Wtedy kąt β ma miarę

A. 80°

B. 70°

C. 60°

D. 50°

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 22"

Matura maj 2021 p. podstawowy matematyka - z. 21

Zadanie 21 (0-1) - matura poziom podstawowy maj 2021

2015

Punkty A, B, C i D leżą na okręgu o środku S. Miary kątów SBC, BCD, CDA są równe odpowiednio: |∡SBC|=60°, |∡BCD|=110°, |∡CDA|=90° (zobacz rysunek).

Wynika stąd, że miara α kąta DAS jest równa

A. 25°

B. 30°

C. 35°

D. 40°

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 21"

Matura maj 2021 p. podstawowy matematyka - z. 20

Zadanie 20 (0-1) - matura poziom podstawowy maj 2021

2015

W trójkącie ABC bok BC ma długość 13, a wysokość CD tego trójkąta dzieli bok AB na odcinki o długościach |AD|=3 i |BD|=12 (zobacz rysunek obok). Długość boku AC jest równa

A. \sqrt{34}

B. \frac{13}{4}

C. 2\sqrt{14}

D. 3\sqrt{45}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 20"

Matura maj 2021 p. podstawowy matematyka - z. 19

Zadanie 19 (0-1) - matura poziom podstawowy maj 2021

2015

Pole pewnego trójkąta równobocznego jest równe \frac{4\sqrt{3}}{9}. Obwód tego trójkąta jest równy

A. 4

B. 2

C. \frac{4}{3}

D. \frac{2}{3}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 19"

Matura maj 2021 p. podstawowy matematyka - z. 18

Zadanie 18 (0-1) - matura poziom podstawowy maj 2021

2015

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 8 oraz tg \alpha =\frac{2}{5} (zobacz rysunek).

Pole tego trójkąta jest równe

A. 12

B. \frac{37}{3}

C. \frac{62}{5}

D. \frac{64}{5}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 18"

Matura maj 2021 p. podstawowy matematyka - z. 17

Zadanie 17 (0-1) - matura poziom podstawowy maj 2021

2015

Prosta k jest styczna w punkcie A do okręgu o środku O. Punkt B leży na tym okręgu i miara kąta AOB jest równa 80°. Przez punkty O i B poprowadzono prostą, która przecina prostą k w punkcie C (zobacz rysunek).

Miara kąta BAC jest równa

A. 10°

B. 30°

C. 40°

D. 50°

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 17"

Matura maj 2021 p. podstawowy matematyka - z. 16

Zadanie 16 (0-1) - matura poziom podstawowy maj 2021

2015

Dla każdego kąta ostrego α iloczyn \frac{cos \alpha}{1-sin^2\alpha} \cdot \frac{1- cos^2 \alpha}{sin \alpha}

A. sin α

B. tg α

C. cos α

D. sin2 α

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 16"