Tag: <span>matura poziom rozszerzony</span>

Matura poziom rozszerzony - maj 2011

Zadania z matury rozszerzonej z matematyki 2011 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura poziom rozszerzony - maj 2012

Zadania z matury rozszerzonej z matematyki 2012 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura poziom rozszerzony - maj 2013

Zadania z matury rozszerzonej z matematyki 2013 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura poziom rozszerzony - maj 2014

Zadania z matury rozszerzonej z matematyki 2014 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura poziom rozszerzony - maj 2015

Zadania z matury rozszerzonej z matematyki 2015 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura poziom rozszerzony - maj 2016

Zadania z matury rozszerzonej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura poziom rozszerzony - maj 2017

Zadania z matury rozszerzonej z matematyki 2017 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura poziom rozszerzony - maj 2018

Zadania z matury rozszerzonej z matematyki 2018 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań.

Poniżej odnośniki do zadań:

Zadanie na chwilę obecną niedostępne


Zadanie z odpowiedzią - bez analizy


Zadanie z analizą i odpowiedzią

Matura czerwiec 2022 p. rozszerzony matematyka - z. 6

Zadanie 6 (0-3)

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y takich, że x ≠ y, spełniona jest nierówność

x4+y4>xy(x2+y2)

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura czerwiec (2.06.2022) poziom podstawowy

Czytaj dalej"Matura czerwiec 2022 p. rozszerzony matematyka - z. 6"

Matura czerwiec 2022 p. rozszerzony matematyka - z. 5

Zadanie 5 (0-2)

Wśród 390 pracowników pewnej firmy jest 150 kobiet i 240 mężczyzn. Wśród nich w wieku przedemerytalnym jest 21 kobiet i 43 mężczyzn. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrany pracownik tej firmy jest w wieku przedemerytalnym – pod warunkiem że jest mężczyzną.

W poniższe kratki wpisz kolejno – od lewej do prawej – pierwszą, drugą oraz trzecią cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura czerwiec (2.06.2022) poziom podstawowy

Czytaj dalej"Matura czerwiec 2022 p. rozszerzony matematyka - z. 5"

Matura czerwiec 2022 p. rozszerzony matematyka - z. 4

Zadanie 4 (0-1)

Pole trójkąta ostrokątnego o bokach 5 i 8 jest równe 12. Długość trzeciego boku tego trójkąta jest równa

A. 5

B. 8

C. \sqrt{41}

D. \sqrt{143}

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura czerwiec (2.06.2022) poziom podstawowy

Czytaj dalej"Matura czerwiec 2022 p. rozszerzony matematyka - z. 4"

Matura czerwiec 2022 p. rozszerzony matematyka - z. 3

Zadanie 3 (0-1)

Sumą wektorów \vec a=[2+2m, \frac{2}{3}n+1] oraz \vec b=[n+1, m+2] jest wektor \vec c=[0, 0]. Wynika stąd, że

A. m=1 i n=3

B. m=-9 i n=-21

C. m=3 i n=-9

D. m=-1 i n=0

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura czerwiec (2.06.2022) poziom podstawowy

Czytaj dalej"Matura czerwiec 2022 p. rozszerzony matematyka - z. 3"

Matura czerwiec 2022 p. rozszerzony matematyka - z. 2

Zadanie 2 (0-1)

Granica lim_{x\to -3}=\frac{0,5x^2+3,5x+6}{-x^2+2x+15} jest równa

A. (-\frac{1}{8})

B. \frac{1}{16}

C. (-\frac{1}{16})

D. \frac{7}{4}

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura czerwiec (2.06.2022) poziom podstawowy

Czytaj dalej"Matura czerwiec 2022 p. rozszerzony matematyka - z. 2"

Matura czerwiec 2022 p. rozszerzony matematyka - z. 1

Zadanie 1 (0-1)

Wiadomo, że log52=a i log53=b. wtedy liczba log1840 jest równa

A. \frac{3a+1}{a+b}

B. \frac{2a+1}{a+b}

C. \frac{2a+1}{a+2b}

D. \frac{3a+1}{2b+a}

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura czerwiec (2.06.2022) poziom podstawowy

Czytaj dalej"Matura czerwiec 2022 p. rozszerzony matematyka - z. 1"

Matura poziom rozszerzony - maj 2022

matura poziom rozszerzony maj 2022

 

Zadania z matury 11.05.2022.

 

Zadanie z odpowiedzią - bez analizy

Zadanie z analizą i odpowiedzią

Czytaj dalej"Matura poziom rozszerzony - maj 2022"

Matura maj 2022 p. rozszerzony matematyka - z. 15

Zadanie 15 (0-7)

Rozpatrujemy wszystkie trójkąty równoramienne o obwodzie równym 18.

a) Wykaż, że pole P każdego z tych trójkątów, jako funkcja długości b ramienia, wyraża się wzorem P(b)=\frac{(18-2b)\cdot\sqrt{18b-81}}{2}

b) Wyznacz dziedzinę funkcji P.

c) Oblicz długości boków tego z rozpatrywanych trójkątów, który ma największe pole.

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj (11.05.2022) poziom podstawowy

Czytaj dalej"Matura maj 2022 p. rozszerzony matematyka - z. 15"

Matura maj 2022 p. rozszerzony matematyka - z. 14

Zadanie 14 (0-6)

Punkt A = (−3, 2) jest wierzchołkiem trójkąta równoramiennego ABC, w którym |AC| = |BC|. Pole tego trójkąta jest równe 15. Bok BC zawarty jest w prostej o równaniu y = x − 1. Oblicz współrzędne wierzchołków B i C tego trójkąta.

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj (11.05.2022) poziom podstawowy

Czytaj dalej"Matura maj 2022 p. rozszerzony matematyka - z. 14"

Matura maj 2022 p. rozszerzony matematyka - z. 13

Zadanie 13 (0-5)

Dany jest graniastosłup prosty ABCDEFGH o podstawie prostokątnej ABCD. Przekątne AH i AF ścian bocznych tworzą kąt ostry o mierze α takiej, że sin\alpha=\frac{12}{13} (zobacz rysunek). Pole trójkąta AFH jest równe 26,4. Oblicz wysokość h tego graniastosłupa.

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj (11.05.2022) poziom podstawowy

Czytaj dalej"Matura maj 2022 p. rozszerzony matematyka - z. 13"

Matura maj 2022 p. rozszerzony matematyka - z. 12

Zadanie 12 (0-5)

Wyznacz wszystkie wartości parametru m, dla których równanie

x2-(m+1)x+m=0

ma dwa różne rozwiązania rzeczywiste x1 oraz x2, spełniające warunki:

x_1\neq0, x_2\neq0 oraz \frac{1}{x_1}+\frac{1}{x_2}+2=\frac{1}{x_1^2}+\frac{1}{x_2^2}

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj (11.05.2022) poziom podstawowy

Czytaj dalej"Matura maj 2022 p. rozszerzony matematyka - z. 12"

Matura maj 2022 p. rozszerzony matematyka - z. 11

Zadanie 11 (0-4)

Rozwiąż równanie sin x + sin 2x + sin 3x = 0 w przedziale 〈0, π〉.

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj (11.05.2022) poziom podstawowy

Czytaj dalej"Matura maj 2022 p. rozszerzony matematyka - z. 11"