Losujemy ... moneta (cz.1)

Rozwiązując kolejne zadanie z statystyki opisowej z matury pomyślałem, że wielu z Was sceptycznie może podchodzić do zagadnienia prawdopodobieństwa.

Aby sprawdzić, czy to prawdopodobieństwo wyrzucenia orła przy rzucie monetą wynosi P=1/2, lub czy prawdopodobieństwo otrzymania szóstki w rzucie kostką jest równe P=1/6 postanowiłem przygotować niewielkie narzędzie do testów. Zainteresowany/a? to przejdź do dalszej części artykułu.

Czytaj dalej"Losujemy ... moneta (cz.1)"

Matura 2019 p. podstawowy matematyka - z. 30

Zadanie 30 (0-2)

Ze zbioru liczb {1, 2, 3, 4, 5} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Czytaj dalej"Matura 2019 p. podstawowy matematyka - z. 30"

Matura 2019 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1)

W pudełku jest 40 kul. Wśród nich jest 35 kul białych, a pozostałe to kule czerwone. Prawdopodobieństwo wylosowania każdej kuli jest takie samo. Z pudełka losujemy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy kulę czerwoną, jest równe

A. 1/8

B. 1/5

C. 1/40

D. 1/35

Czytaj dalej"Matura 2019 p. podstawowy matematyka - z. 25"

Matura 2018 p. pdst. sierpień matematyka - z. 25

Zadanie 25 (0-1)

W grupie liczącej 29 uczniów (dziewcząt i chłopców) jest 15 chłopców. Z tej grupy trzeba wylosować jedną osobę. Prawdopodobieństwo zdarzenia polegającego na tym, że zostanie wylosowana dziewczyna jest równe

A.

B.

C.

D.

Czytaj dalej"Matura 2018 p. pdst. sierpień matematyka - z. 25"

Matura 2018 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1)

W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe

A. 15/35

B. 1/50

C. 15/50

D. 35/50

Czytaj dalej"Matura 2018 p. podstawowy matematyka - z. 25"

Matura 2017 poziom podstawowy - zadanie 33

Zadanie 33 (0-2)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.


Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 33"

Matura 2017 poziom podstawowy - zadanie 25

Zadanie 25 (0-1)

Ze zbioru dwudziestu czterech kolejnych liczb naturalnych od 1 do 24 losujemy jedną liczbę. Niech A oznacza zdarzenie, że wylosowana liczba będzie dzielnikiem liczby 24. Wtedy prawdopodobieństwo zdarzenia A jest równe

A. 1/4

B. 1/3

C. 1/8

D. 1/6

Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 25"

Matura 2016 p. podstawowy matematyka - z. 34

Zadanie 34 (0-4)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 34"

Matura 2016 p. podstawowy matematyka - z. 22

Zadanie 22 (0-1)

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy

A. 0≤p<0.2

B. 0.2≤p≤0.35

C. 0.35<p≤0.5

D. 0.5<p≤1

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 22"

Matura 2015 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1)

W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech p oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy

A.

B.

C.

D.

Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 25"