Tag: <span>matura poziom rozszerzony</span>

Matura maj 2021 p. rozszerzony matematyka - z. 15

Zadanie 15 (0-7)

Pewien zakład otrzymał zamówienie na wykonanie prostopadłościennego zbiornika (całkowicie otwartego od góry) o pojemności 144 m2. Dno zbiornika ma być kwadratem. Żaden z wymiarów zbiornika (krawędzi prostopadłościanu) nie może przekraczać 9 metrów. Całkowity koszt wykonania zbiornika ustalono w następujący sposób:
– 100 zł za 1 m2 dna
– 75 zł za 1 m2 ściany bocznej.
Oblicz wymiary zbiornika, dla którego tak ustalony koszt wykonania będzie najmniejszy.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 15"

Matura maj 2021 p. rozszerzony matematyka - z. 14

Zadanie 14 (0-6)

Dane są parabola o równaniu y=x2 oraz punkty A=(0, 2) i B=(1, 3) (zobacz rysunek). Rozpatrujemy wszystkie trójkąty ABC, których wierzchołek C leży na tej paraboli. Niech m oznacza pierwszą współrzędną punktu C.

a) Wyznacz pole P trójkąta ABC jako funkcję zmiennej m.

b) Wyznacz wszystkie wartości m, dla których trójkąt ABC jest ostrokątny.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 14"

Matura maj 2021 p. rozszerzony matematyka - z. 13

Zadanie 13 (0-4)

Dany jest trójkąt prostokątny ABC. Promień okręgu wpisanego w ten trójkąt jest pięć razy krótszy od przeciwprostokątnej tego trójkąta. Oblicz sinus tego z kątów ostrych trójkąta ABC, który ma większą miarę.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 13"

Matura maj 2021 p. rozszerzony matematyka - z. 12

Zadanie 12 (0-5)

Rozwiąż równanie cos2x=\frac{\sqrt{2}}{2}(cosx-sinx) w przedziale <0,π>.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 12"

Matura maj 2021 p. rozszerzony matematyka - z. 11

Zadanie 11 (0-5)

Wyznacz wszystkie wartości parametru m, dla których trójmian kwadratowy

4x^2-2(m+1)x+m

ma dwa różne pierwiastki rzeczywiste x1 oraz x2, spełniające warunki:

x_1\neq 0

x_2\neq 0 oraz

x_1+x_2\leq\frac{1}{x_1}+\frac{1}{x_2}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 11"

Matura maj 2021 p. rozszerzony matematyka - z. 10

Zadanie 10 (0-4)

Prosta przechodząca przez punkty A=(8, −6) i B=(5, 15) jest styczna do okręgu o środku w punkcie O=(0, 0). Oblicz promień tego okręgu i współrzędne punktu styczności tego okręgu z prostą AB.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 10"

Matura maj 2021 p. rozszerzony matematyka - z. 9

Zadanie 9 (0-4)

Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 15, jeśli wiadomo, że jest ona podzielna przez 18.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 9"

Matura maj 2021 p. rozszerzony matematyka - z. 8

Zadanie 8 (0-3)

Dany jest trójkąt równoboczny ABC. Na bokach AB i AC wybrano punkty – odpowiednio – D i E takie, że |BD|=|AE|=13 |AB|. Odcinki CD i BE przecinają się w punkcie P(zobacz rysunek).

Wykaż, że pole trójkąta DBP jest 21 razy mniejsze od pola trójkąta ABD.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 8"

Matura maj 2021 p. rozszerzony matematyka - z. 7

Zadanie 7 (0-3)

Rozwiąż nierówność:

\frac{2x-1}{1-x}\leq\frac{2+2x}{5x}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 7"

Matura maj 2021 p. rozszerzony matematyka - z. 6

Zadanie 6 (0-3)

Niech log_218=c. Wykaż, że log_34=\frac{4}{c-1}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 6"

Matura maj 2021 p. rozszerzony matematyka - z. 5

Zadanie 5 (0-2)

Oblicz granicę

lim_{n\to\infty} \frac{(3n+2)^2-(1-2n)^2}{(2n-1)^2}

W poniższe kratki wpisz kolejno – od lewej do prawej – cyfrę jedności i pierwsze dwie cyfry po przecinku skończonego rozwinięcia dziesiętnego otrzymanego wyniku.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 5"

Matura maj 2021 p. rozszerzony matematyka - z. 4

Zadanie 4 (0-1)

Liczba różnych pierwiastków równania 3x+|x−4|=0 jest równa

A. 0

B. 1

C. 2

D. 3

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 4"

Matura maj 2021 p. rozszerzony matematyka - z. 3

Zadanie 3 (0-1)

Wielomian W(x) = x4+81 jest podzielny przez

A. x-3

B. x^2+9

C. x^2-3\sqrt{2}x+9

D. x^2+3\sqrt{2}x-9

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 3"

Matura maj 2021 p. rozszerzony matematyka - z. 2

Zadanie 2 (0-1)

Na rysunku przedstawiono fragment wykresu funkcji f określonej dla każdej liczby rzeczywistej x.

Jeden spośród podanych poniżej wzorów jest wzorem tej funkcji. Wskaż wzór funkcji f.

A. f(x)=\frac{cos x+1}{|cos x|+1}

B. f(x)=\frac{sin x+1}{|sin x|+1}

C. f(x)=\frac{|cos x|-2}{cos x-2}

D. f(x)=\frac{|sin x|-2}{sin x-2}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 2"

Matura maj 2021 p. rozszerzony matematyka - z. 1

Zadanie 1 (0-1)

Różnica cos2 165° − sin2 165° jest równa

A. -1

B. -\frac{\sqrt{3}}{2}

C. -\frac{1}{2}

D. \frac{\sqrt{3}}{2}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (11.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 1"

Matura maj 2020 p. rozszerzony matematyka - z. 15

Zadanie 15 (0-7)

Należy zaprojektować wymiary prostokątnego ekranu smartfona, tak aby odległości tego ekranu od krótszych brzegów smartfona były równe 0,5 cm każda, a odległości tego ekranu od dłuższych brzegów smartfona były równe 0,3 cm każda (zobacz rysunek – ekran zaznaczono kolorem szarym). Sam ekran ma mieć powierzchnię 60 cm2. Wyznacz takie wymiary ekranu smartfona, przy których powierzchnia ekranu wraz z obramowaniem jest najmniejsza.

Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj (07.05.2020) poziom podstawowy

Czytaj dalej"Matura maj 2020 p. rozszerzony matematyka - z. 15"

Matura maj 2020 p. rozszerzony matematyka - z. 14

Zadanie 14 (0-6)

Podstawą ostrosłupa czworokątnego ABCDS jest trapez ABCD (AB||CD). Ramiona tego trapezu mają długości |AD|=10 i |BC|=16, a miara kąta ABC jest równa 30°. Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α , taki, że tg\alpha=\frac{9}{2}. Oblicz objętość tego ostrosłupa.

Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj (07.05.2020) poziom podstawowy

Czytaj dalej"Matura maj 2020 p. rozszerzony matematyka - z. 14"

Matura maj 2020 p. rozszerzony matematyka - z. 13

Zadanie 13 (0-4)

Oblicz, ile jest wszystkich siedmiocyfrowych liczb naturalnych, w których zapisie dziesiętnym występują dokładnie trzy cyfry 1 i dokładnie dwie cyfry 2.

Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj (07.05.2020) poziom podstawowy

Czytaj dalej"Matura maj 2020 p. rozszerzony matematyka - z. 13"