Kategoria: <span>3) oblicza prawdopodobieństwa w prostych sytuacjach</span>

Losujemy ... moneta (cz.1)

Rozwiązując kolejne zadanie z statystyki opisowej z matury pomyślałem, że wielu z Was sceptycznie może podchodzić do zagadnienia prawdopodobieństwa.

Aby sprawdzić, czy to prawdopodobieństwo wyrzucenia orła przy rzucie monetą wynosi P=1/2, lub czy prawdopodobieństwo otrzymania szóstki w rzucie kostką jest równe P=1/6 postanowiłem przygotować niewielkie narzędzie do testów. Zainteresowany/a? to przejdź do dalszej części artykułu.

Czytaj dalej"Losujemy ... moneta (cz.1)"

Matura czerwiec 2022 p. podstawowy matematyka - z. 27

Zadanie 27 (0-1)

W pudełku są tylko kule białe, czarne i zielone. Kul białych jest dwa razy więcej niż czarnych, a czarnych jest trzy razy więcej niż zielonych. Z pudełka losujemy jedną kulę. Prawdopodobieństwo wylosowania kuli białej jest równe

A. \frac{2}{3}

B. \frac{2}{9}

C. \frac{1}{6}

D. \frac{3}{5}

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura czerwiec (02.06.2022) poziom podstawowy

Czytaj dalej"Matura czerwiec 2022 p. podstawowy matematyka - z. 27"

Matura maj 2022 p. podstawowy matematyka - z. 34

Zadanie 34 (0-2)

Ze zbioru dziewięcioelementowego M = {1, 2, 3, 4, 5, 6, 7, 8, 9} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb ze zbioru M, których iloczyn jest równy 24. Oblicz prawdopodobieństwo zdarzenia A.

Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj (05.05.2022) poziom podstawowy

Czytaj dalej"Matura maj 2022 p. podstawowy matematyka - z. 34"

Matura czerwiec 2021 p. podstawowy matematyka - z. 27

Zadanie 27 (0-1)

W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera - spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 25% więcej niż płytek z literami samogłoskowymi. Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe

A. 0,75

B. 0,25

C. \frac{4}{9}

D. \frac{5}{9}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec (05.06.2021) poziom podstawowy

Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 27"

Matura maj 2021 p. podstawowy matematyka - z. 34

Zadanie 34 (0-2) - matura poziom podstawowy maj 2021

2015

Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma liczb wyrzuconych oczek jest równa 4 lub 5, lub 6.

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 34"

Matura maj 2021 p. podstawowy matematyka - z. 26

Zadanie 26 (0-1) - matura poziom podstawowy maj 2021

2015

Z wierzchołków sześcianu losujemy jednocześnie dwa różne wierzchołki. Prawdopodobieństwo tego, że wierzchołki te będą końcami przekątnej sześcianu, jest równe

A. \frac{1}{7}

B. \frac{4}{7}

C. \frac{1}{14}

D. \frac{3}{7}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj (05.05.2021) poziom podstawowy

Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 26"

Matura 2021 p. podstawowy matematyka - z. 27

Zadanie 27 (0-1)

Ze zbioru liczb naturalnych dwucyfrowych losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 5, jest równe

A. \frac{2}{5}

B. \frac{5}{100}

C. \frac{5}{90}

D. \frac{18}{90}

Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura marzec (04.03.2021) poziom podstawowy

Czytaj dalej"Matura 2021 p. podstawowy matematyka - z. 27"

Matura 2020 p. podstawowy matematyka - z. 30

Zadanie 30 (0-2)

Rzucamy dwa razy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.

Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj (09.06.2020) poziom podstawowy

Czytaj dalej"Matura 2020 p. podstawowy matematyka - z. 30"

Matura 2019 p. pdst. sierpień matematyka - z. 25

Zadanie 25 (0-1)

W grupie 60 osób (kobiet i mężczyzn) jest 35 kobiet. Z tej grupy losujemy jedną osobę. Prawdopodobieństwo wylosowania każdej osoby jest takie samo. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy mężczyznę, jest równe

A. \frac{1}{60}

B. \frac{1}{25}

C. \frac{7}{12}

D. \frac{5}{12}

Czytaj dalej"Matura 2019 p. pdst. sierpień matematyka - z. 25"

Matura 2019 p. pdst. czerwiec matematyka - z. 31

Zadanie 31 (0-2)

Doświadczenie losowe polega na trzykrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy sumę oczek równą 16.

Źródło CKE - Arkusz egzaminacyjny 2018/2019 - Matura czerwiec poziom podstawowy

Czytaj dalej"Matura 2019 p. pdst. czerwiec matematyka - z. 31"

Matura 2019 p. pdst. czerwiec matematyka - z. 25

Zadanie 25 (0-1)

Ze zbioru kolejnych liczb naturalnych {20, 21, 22,..., 39, 40} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby podzielnej przez 4 jest równe:

A. \frac{1}{4}

B. \frac{2}{7}

C. \frac{6}{19}

D. \frac{3}{10}

Źródło CKE - Arkusz egzaminacyjny 2018/2019 - Matura czerwiec poziom podstawowy

Czytaj dalej"Matura 2019 p. pdst. czerwiec matematyka - z. 25"

Matura 2019 p. podstawowy matematyka - z. 30

Zadanie 30 (0-2)

Ze zbioru liczb {1, 2, 3, 4, 5} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Czytaj dalej"Matura 2019 p. podstawowy matematyka - z. 30"

Matura 2019 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1)

W pudełku jest 40 kul. Wśród nich jest 35 kul białych, a pozostałe to kule czerwone. Prawdopodobieństwo wylosowania każdej kuli jest takie samo. Z pudełka losujemy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy kulę czerwoną, jest równe

A. 1/8

B. 1/5

C. 1/40

D. 1/35

Czytaj dalej"Matura 2019 p. podstawowy matematyka - z. 25"

Matura 2018 p. pdst. sierpień matematyka - z. 25

Zadanie 25 (0-1)

W grupie liczącej 29 uczniów (dziewcząt i chłopców) jest 15 chłopców. Z tej grupy trzeba wylosować jedną osobę. Prawdopodobieństwo zdarzenia polegającego na tym, że zostanie wylosowana dziewczyna jest równe

A.

B.

C.

D.

Czytaj dalej"Matura 2018 p. pdst. sierpień matematyka - z. 25"

Matura 2018 p. podstawowy matematyka - z. 33

Zadanie 33 (0-4)

Dane są dwa zbiory: A ={100, 200, 300, 400, 500, 600, 700} i B ={10,11,12,13,14,15,16}. Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3. Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego.

Czytaj dalej"Matura 2018 p. podstawowy matematyka - z. 33"

Matura 2018 p. podstawowy matematyka - z. 25

Zadanie 25 (0-1)

W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe

A. 15/35

B. 1/50

C. 15/50

D. 35/50

Czytaj dalej"Matura 2018 p. podstawowy matematyka - z. 25"

Matura 2017 poziom podstawowy - zadanie 33

Zadanie 33 (0-2)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.


Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 33"

Matura 2017 poziom podstawowy - zadanie 25

Zadanie 25 (0-1)

Ze zbioru dwudziestu czterech kolejnych liczb naturalnych od 1 do 24 losujemy jedną liczbę. Niech A oznacza zdarzenie, że wylosowana liczba będzie dzielnikiem liczby 24. Wtedy prawdopodobieństwo zdarzenia A jest równe

A. 1/4

B. 1/3

C. 1/8

D. 1/6

Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 25"

Matura 2016 p. podstawowy matematyka - z. 34

Zadanie 34 (0-4)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 34"

Matura 2016 p. podstawowy matematyka - z. 22

Zadanie 22 (0-1)

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy

A. 0≤p<0.2

B. 0.2≤p≤0.35

C. 0.35<p≤0.5

D. 0.5<p≤1

Czytaj dalej"Matura 2016 p. podstawowy matematyka - z. 22"