Twierdzenie cosinusów

 

 

Definicja:

W trójkącie kwadrat długości dowolnego boku jest równy sumie kwadratów długości pozostałych boków, pomniejszonej o podwójny iloczyn długości tych boków oraz cosinusa kąta zawartego między nimi.

\(c^2=a^2+b^2-2cos\gamma\).


Załóżmy, że \(\gamma=90^\circ\). Otrzymujemy trójką prostokątny. Ponieważ \(cos(\gamma)=90^\circ=0\), to równanie przyjmuje postać \(c^2=a^2+b^2\). W ten sposób wyprowadziliśmy wzór na Twierdzenie Pitagorasa.

trojkat-prostokatny

Twierdzenie cosinusów
Oceń tą treść

One Comment

  1. Pingback: Twierdzenie Pitagorasa - planimetria - Oblicz.com.pl

Comments are closed.