Treści nauczania - wymagania szczegółowe III etap edukacyjny (gimnazjum)

Treść kierowana do nauczycieli i korepetytorów. Zakładam, że jeśli jesteś uczniem to pewnie nieźle cię to nudzi. Możesz jednak potraktować to jako wskazówkę. Poniżej znajdziesz opis umiejętności które Twój uczeń, bądź Ty jako uczeń powinieneś posiadać po ukończeniu tego etapu nauczania. Chciałem podejść do tematu nieco inaczej niż inni. Pomimo tego, że opublikowany zostanie tekst nudnej jak flaki z olejem ustawy (przepraszam, ale muszę to podać : Dz.U.2012.977 2014.09.01 zm. Dz.U.2014.803 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ z dnia 27 sierpnia 2012 r. w sprawie podstawy programowej wychowania przedszkolnego oraz kształcenia ogólnego w poszczególnych typach szkół (Dz. U. z dnia 30 sierpnia 2012 r.)) to spróbuję to wykorzystać jako przewodnik po dodawanych zadaniach tworząc swego rodzaju Bibliotekę posortowanych treści.



Poniżej kropka w kropkę wyciągnięte z ustawy Cele kształcenia. tam gdzie pojawia się ikona linku można przejść do listy zadań związanych z tym celem. Lista zadań jest systematycznie rozwijana.

 

MATEMATYKA

III etap edukacyjny

 

Cele kształcenia - wymagania ogólne

 

I. Wykorzystanie i tworzenie informacji.

Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa języka matematycznego do opisu rozumowania i uzyskanych wyników.

II. Wykorzystywanie i interpretowanie reprezentacji.

Uczeń używa prostych, dobrze znanych obiektów matematycznych, interpretuje pojęcia matematyczne i operuje obiektami matematycznymi.

III. Modelowanie matematyczne.

Uczeń dobiera model matematyczny do prostej sytuacji, buduje model matematyczny danej sytuacji.

IV. Użycie i tworzenie strategii.

Uczeń stosuje strategię jasno wynikającą z treści zadania, tworzy strategię rozwiązania problemu.

V. Rozumowanie i argumentacja.

Uczeń prowadzi proste rozumowania, podaje argumenty uzasadniające poprawność rozumowania.

 

Treści nauczania - wymagania szczegółowe

 

  1. Liczby wymierne dodatnie. Uczeń:

1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000);
2) dodaje, odejmuje, mnoży i dzieli liczby wymierne zapisane w postaci ułamków zwykłych lub rozwinięć dziesiętnych skończonych zgodnie z własną strategią obliczeń (także z wykorzystaniem kalkulatora);
3) zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe;
4) zaokrągla rozwinięcia dziesiętne liczb;
5) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne;
6) szacuje wartości wyrażeń arytmetycznych;
7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.).

  1. Liczby wymierne (dodatnie i niedodatnie). Uczeń:

1) interpretuje liczby wymierne na osi liczbowej. Oblicza odległość między dwiema liczbami na osi liczbowej;
2) wskazuje na osi liczbowej zbiór liczb spełniających warunek typu: xł3, x<5;
3) dodaje, odejmuje, mnoży i dzieli liczby wymierne;
4) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających liczby wymierne.

  1. Potęgi. Uczeń:

1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych;
2) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych);
3) porównuje potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz porównuje potęgi o takich samych wykładnikach naturalnych i różnych dodatnich podstawach;
4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych;
5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a·10<sup>k</sup>, gdzie 1ŁaŁ10 oraz k jest liczbą całkowitą.

  1. Pierwiastki. Uczeń:

1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych;
2) wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka;
3) mnoży i dzieli pierwiastki drugiego stopnia;
4) mnoży i dzieli pierwiastki trzeciego stopnia.

  1. Procenty. Uczeń:

1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie;
2) oblicza procent danej liczby;
3) oblicza liczbę na podstawie danego jej procentu;
4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej.

  1. Wyrażenia algebraiczne. Uczeń:

1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami;
2) oblicza wartości liczbowe wyrażeń algebraicznych;
3) redukuje wyrazy podobne w sumie algebraicznej;
4) dodaje i odejmuje sumy algebraiczne;
5) mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoży sumy algebraiczne;
6) wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias;
7) wyznacza wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych.

  1. Równania. Uczeń:

1) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi;
2) sprawdza, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą;
3) rozwiązuje równania stopnia pierwszego z jedną niewiadomą;
4) zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi;
5) sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi;
6) rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi;
7) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym.

  1. Wykresy funkcji. Uczeń:

1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych;
2) odczytuje współrzędne danych punktów;
3) odczytuje z wykresu funkcji; wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero;
4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym);
5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu.

  1. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń:

1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów;
2) wyszukuje, selekcjonuje i porządkuje informacje z dostępnych źródeł;
3) przedstawia dane w tabeli, za pomocą diagramu słupkowego lub kołowego;
4) wyznacza średnią arytmetyczną i medianę zestawu danych;
5) analizuje proste doświadczenia losowe (np. rzut kostką, rzut monetą, wyciąganie losu) i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (prawdopodobieństwo wypadnięcia orła w rzucie monetą, dwójki lub szóstki w rzucie kostką, itp.).

  1. Figury płaskie. Uczeń:

1) korzysta ze związków między kątami utworzonymi przez prostą przecinającą dwie proste równoległe;
2) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu;
3) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności;
4) rozpoznaje kąty środkowe;
5) oblicza długość okręgu i łuku okręgu;
6) oblicza pole koła, pierścienia kołowego, wycinka kołowego;
7) stosuje twierdzenie Pitagorasa;
8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach;
9) oblicza pola i obwody trójkątów i czworokątów;
10) zamienia jednostki pola;
11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali;
12) oblicza stosunek pól wielokątów podobnych;
13) rozpoznaje wielokąty przystające i podobne;
14) stosuje cechy przystawania trójkątów;
15) korzysta z własności trójkątów prostokątnych podobnych;
16) rozpoznaje pary figur symetrycznych względem prostej i względem punktu. Rysuje pary figur symetrycznych;
17) rozpoznaje figury, które mają oś symetrii, i figury, które mają środek symetrii. Wskazuje oś symetrii i środek symetrii figury;
18) rozpoznaje symetralną odcinka i dwusieczną kąta;
19) konstruuje symetralną odcinka i dwusieczną kąta;
20) konstruuje kąty o miarach 60°, 30°, 45°;
21) konstruuje okrąg opisany na trójkącie oraz okrąg wpisany w trójkąt;
22) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności.

  1. Bryły. Uczeń:

1) rozpoznaje graniastosłupy i ostrosłupy prawidłowe;
2) oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym);
3) zamienia jednostki objętości.



Treści nauczania - wymagania szczegółowe III etap edukacyjny (gimnazjum)
5 (100%) 1 głos[ów]

Dodaj komentarz

Twój adres email nie zostanie opublikowany.