Kwadrat

Czworokąt, którego wszystkie kąty są kątami prostymi oraz boki mają tą samą długość nazywany jest kwadratem. Spójrz na animację: Na rysunku znajdziesz następujące elementy: a - bok kwadratu, d - przekątna - czyli odcinek łączący przeciwległe wierzchołki. Przekątna jest najdłuższym odcinkiem, który możesz narysować wewnątrz kwadratu, a takich przekątnych w jednym kwadracie możesz narysować dwie.

Przekątna prostopadłościanu

Już jutro zaczyna się nowy rok szkolny, a ja w ten upalny dzień katuję mój komputer, który renderuje animację pokazującą gdzie znajduje się przekątna prostopadłościanu. Co uważniejszy czytelnik pewnie już wie, że znając kilka wielkości opisujących prostopadłościan można wyliczyć długość tej przeciwprostokątnej. Popatrz na animację i pomyśl, jak to zrobić.

Więcej szczegółów już jutro. Dzisiejsza temperatura nie nastraja do efektywnej pracy.

Czytaj dalej"Przekątna prostopadłościanu"

Wielkie liczby i horror wojny

W 2016 roku nagrodzono genialnie wykonaną animowaną infografikę. Przedstawia ona ogrom strat w ludziach. Niestety mówimy tu o liczbach wielocyfrowych i przeraża to, że po tylu latach coraz częściej zapominamy o jednostkach i sprowadzamy wszystko do statystyk. Ta droga oczywiście też jest dobra, aby pamiętać o koszmarze wojny, ale drogi czytelniku zapytaj (puki jeszcze możesz) znanych Tobie seniorów o historię Twojej rodziny lub miasta. Nie pozwól, aby pamięć o tak bezdusznym wydarzeniu, jak II wojna światowa żyła tylko w liczbach.

Źródło: http://pl.fallen.io/ww2/, autor: Neil Halloran

Problem w tym, że nadal w różnych częściach świata pojawiają się różne konflikty, które sprowadzają się do napisu na kolorowym pasku telewizji informacyjnej x-ludzi zginęło w wyniku ... . A to tylko wierzchołek góry lodowej. Współczesne analizy, jak ta prowadzona przez Uppsala University w projekcie: The Uppsala Conflict Data Program (UCDP) to niestety jeden z największych arkuszy kalkulacyjnych jaki widziałem (patrz: http://ucdp.uu.se/downloads/ucdpprio/ucdp-prio-acd-191.xlsx).

Film w polskiej wersji językowej dostępny jest poniżej

Polegli Drugiej Wojny Światowej from Neil Halloran on Vimeo.



Czytaj dalej"Wielkie liczby i horror wojny"

Matematyka na wesoło (Ig Nobel od roku 2011 do 2018)

czyli kilka słów o Ig Noblach część trzecia

To już ostatnia część dotycząca Ig Noble'i w tej postaci. Kolejne (jeżeli opublikuję) będą omawiały inne dziedziny lub pojedynczo przyznane nagrody od 2019 r. Tym razem tylko dwa wyróżnienia: koniec świata i 888 dzieci. Brzmi prawie jak Apokalipsa Św. Jana.

Czytaj dalej"Matematyka na wesoło (Ig Nobel od roku 2011 do 2018)"

Matura 2019 p. pdst. sierpień matematyka - z. 34

Zadanie 34 (0-5)

Długość krawędzi bocznej ostrosłupa prawidłowego czworokątnego ABCDS jest równa 12 (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt α taki, że tg \alpha = \frac{2}{\sqrt{5}}. Oblicz objętość tego ostrosłupa.

Czytaj dalej"Matura 2019 p. pdst. sierpień matematyka - z. 34"

Matura 2019 p. pdst. sierpień matematyka - z. 33

Zadanie 33 (0-4)

Środek okręgu leży w odległości 10 cm od cięciwy tego okręgu. Długość tej cięciwy jest o 22 cm większa od promienia tego okręgu. Oblicz promień tego okręgu.

Czytaj dalej"Matura 2019 p. pdst. sierpień matematyka - z. 33"

Matura 2019 p. pdst. sierpień matematyka - z. 32

Zadanie 32 (0-4)

W ciągu arytmetycznym (a1, a2, ..., a39, a40) suma wyrazów tego ciągu o numerach parzystych jest równa 1340, a suma wyrazów ciągu o numerach nieparzystych jest równa 1400. Wyznacz ostatni wyraz tego ciągu arytmetycznego.

Czytaj dalej"Matura 2019 p. pdst. sierpień matematyka - z. 32"